Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhi-Fang Hao, ${ }^{\text {a }}$ Qiang Xu, ${ }^{\text {b }}$ Zhi-Feng Lu ${ }^{\text {c }}$ and Jian-Xin Lia*

${ }^{\text {a }}$ Institute of Medicinal Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, ${ }^{\mathbf{b}}$ School of Life Science, Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\text {'School }}$ of Chemistry \& Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail:
luzf_nju@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.059$
$w R$ factor $=0.141$
Data-to-parameter ratio $=13.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
5,7-Bis(benzyloxy)-4H-benzopyran-4-one

The title compound, $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{4}$, contains two molecules in the asymmetric unit which differ from each other in the dihedral angles between the benzyl and chromone groups. There are intramolecular and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions as well as $\pi-\pi$ stacking interactions in the crystal structure.

Comment

5,7-Dihydroxychromone is a flavanoid decomposition product that has been found as a constituent in certain plant extracts (Pendse et al., 1973) and is a germination and growth inhibitor (Spencer \& Tjarks, 1985). In the process of preparing it, we obtained the title compound, (I), as one of the intermediates. As part of this study, we have undertaken the X-ray crystallographic analysis of (I).

Received 23 December 2005
Accepted 5 January 2006

The title structure (Fig. 1) contains two independent molecules, A and B, in the asymmetric unit. The geometrical parameters of the chromone group in (I) are comparable to those of related structures reported earlier (Wallet \& Cody, 1995). The chromone group is essentially planar in both molecules, with maximum deviations of 0.112 (3) \AA for atom O 2 and 0.108 (3) \AA for O^{\prime}. The benzyl group attached at atom O 3 is almost coplanar with the chromone group, with a dihedral angle of $6.3(2)^{\circ}$ in A and $9.2(2)^{\circ}$ in B, while the other benzyl group at O 4 is twisted away from it, with a dihedral angle of 75.1 (2) ${ }^{\circ}$ in A and 63.2 (2) ${ }^{\circ}$ in B.

In the crystal structure, the molecular packing is stabilized by intramolecular and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2) as well as $\pi-\pi$ stacking interactions (Table 3).

Experimental

A mixture of 2,4-bis(benzyloxy)-6-hydroxyacetophenone (3.2 g) and sodium (0.9 g) in ethyl formate (15 ml) was stirred at 263 K for 6 h . After addition of methanol (5 ml) and ice-water (30 ml), the mixture was acidified with acetic acid. The excess of ethyl formate was removed by a current of air. The mixture was filtered and the solid was dissolved in an ethanol-acetone ($1: 3 \mathrm{v} / \mathrm{v}$) mixed solvent. When the solution was acidified with concentrated hydrochloric acid (10 drops), a white solid was isolated in 70% yield (2.3 g). Single crystals of (I) were obtained by slow evaporation of a petroleum ether- CHCl_{3} (1:1 v / v) solution of (I).

Figure 1
View of the asymmetric unit of the title compound, showing the atomnumbering scheme. Displacement ellipsoids are shown at the 30% probability level.

Figure 2
The crystal packing of (I), viewed down the a axis.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{4} \\
& M_{r}=358.37 \\
& \text { Triclinic, } P \overline{1} \\
& a=9.251(1) \AA \\
& b=13.493(2) \AA \\
& c=14.785(2) \AA \\
& \alpha=92.881(2)^{\circ} \AA \\
& \beta=95.480(2)^{\circ} \\
& \gamma=90.096(2)^{\circ} \\
& V=1834.8(4) \AA^{\circ}
\end{aligned}
$$

Data collection

Bruker SMART Apex CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Bruker, 2000 $)$
$\quad T_{\min }=0.97, T_{\max }=0.98$
9179 measured reflections

$$
Z=4
$$

$D_{x}=1.297 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2940 reflections
$\theta=2.6-25.8^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.30 \times 0.26 \times 0.24 \mathrm{~mm}$

> 6337 independent reflections
> 4578 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.021$
> $\theta_{\max }=25.0^{\circ}$
> $h=-11 \rightarrow 10$
> $k=-16 \rightarrow 13$
> $l=-16 \rightarrow 17$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0748 P)^{2}\right. \\
\quad+0.255 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }= \\
\end{array}{ }^{2} 0.20 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$	$+0.255 P]$
$w R\left(F^{2}\right)=0.141$	where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$S=1.00$	$(\Delta / \sigma)_{\max }<0.001$
6337 reflections	$\Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3}$
487 parameters	$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{C} 3-\mathrm{O} 2$	$1.220(3)$	$\mathrm{C}^{\prime}-\mathrm{O}^{\prime}$	$1.211(3)$
$\mathrm{C} 5-\mathrm{O} 3$	$1.352(3)$	$\mathrm{C}^{\prime}-\mathrm{O}^{\prime}$	$1.330(3)$
$\mathrm{C} 7-\mathrm{O} 4$	$1.352(3)$	$\mathrm{C}^{\prime}-\mathrm{O}^{\prime}$	$1.347(3)$
$\mathrm{C} 5-\mathrm{O} 3-\mathrm{C} 10$	$119.9(2)$	$\mathrm{C} 5^{\prime}-\mathrm{O}^{\prime}-\mathrm{C} 10^{\prime}$	$119.9(2)$
$\mathrm{C} 7-\mathrm{O} 4-\mathrm{C} 17$	$115.7(2)$	$\mathrm{C} 7^{\prime}-\mathrm{O} 4^{\prime}-\mathrm{C} 17^{\prime}$	$117.4(2)$
$\mathrm{C} 1^{\prime}-\mathrm{O} 1^{\prime}-\mathrm{C} 9^{\prime}$	$118.4(2)$		
$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-2.5(3)$	$\mathrm{O} 3^{\prime}-\mathrm{C} 10^{\prime}-\mathrm{C} 11^{\prime}-\mathrm{C} 12^{\prime}$	$0.9(3)$
$\mathrm{O} 4-\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$	$76.2(3)$	$\mathrm{O} 4^{\prime}-\mathrm{C} 17^{\prime}-\mathrm{C} 18^{\prime}-\mathrm{C} 19^{\prime}$	$123.7(2)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 2$	0.93	2.55	$3.462(3)$	167
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 3$	0.93	2.30	$2.648(3)$	102
$\mathrm{C}^{\prime} 2^{\prime}-\mathrm{H} 12^{\prime} \cdots 2^{\prime}$	0.93	2.58	$3.494(3)$	169
$\mathrm{C} 12^{\prime}-\mathrm{H} 12^{\prime} \cdots \mathrm{O}^{\prime}$	0.93	2.30	$2.665(3)$	103
${\mathrm{C} 1-\mathrm{H} 1 \cdots 3^{\text {i }}}^{\mathrm{i}}$	0.93	2.58	$3.508(3)$	173
$\mathrm{C}^{\prime}-\mathrm{H}^{\prime} \cdots \mathrm{O}^{\text {ii }}$	0.93	2.53	$3.439(3)$	165

Symmetry codes: (i) $-x,-y+2,-z$; (ii) $-x+1,-y+2,-z$.

Table 3
$\pi-\pi$ interactions $\left(\AA,{ }^{\circ}\right)$..

$C g I$	$C g J$	Symmetry code	$C g I \cdots C g J$	Dihedral angle	Interplanar distance	Offset
A	B	$-x, 2-y,-z$	$3.784(2)$	$1.2(2)$	$3.422(3)$	1.62
B	A	$-x, 2-y,-z$	$3.784(2)$	$1.2(2)$	$3.422(3)$	1.62
B	B	$-x, 2-y,-z$	$3.623(2)$	$0.0(2)$	$3.425(3)$	1.18
C	D	$1-x, 1-y,-z$	$3.927(2)$	$0.9(2)$	$3.480(3)$	1.82
D	C	$1-x, 1-y,-z$	$3.927(2)$	$0.9(2)$	$3.480(3)$	1.82
D	D	$1-x, 1-y,-z$	$3.699(2)$	$0.0(2)$	$3.479(3)$	1.26

$C g(A), C g(B), C g(C)$ and $C g(D)$ denote the centroids of the aromatic rings O1/C1-C4/ $\mathrm{C} 9, \mathrm{C} 4-\mathrm{C} 9, \mathrm{O} 1^{\prime} / \mathrm{C} 1^{\prime}-\mathrm{C} 4^{\prime} / \mathrm{C} 9^{\prime}$ and $\mathrm{C} 4^{\prime}-\mathrm{C} 9^{\prime}$, respectively. The offset is defined as the distance between $C g(I)$ and the perpendicular projection of $C g(J)$ on ring I.

H atoms were positioned geometrically and were treated as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-$ $0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

This work was supported by the National Natural Science Foundation of China (No. 20572043). We thank Professor Yi-Zhi Li of the Coordination Chemistry Institute, Nanjing University, for technical assistance.

organic papers

References

Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and $S A D A B S$ (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Pendse, R., Rama, A. V. R. \& Venkataraman, K. (1973). Phytochemistry, 12, 2033-2034.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Spencer, G. F. \& Tjarks, L. W. (1985). J. Plant Growth Regul. 4, 177-180.
Wallet, J.-C. \& Cody, V. (1995). Acta Cryst. C51, 1193-1195.

[^0]: © 2006 International Union of Crystallography All rights reserved

